Tumor necrosis factor-alpha expressed constitutively in erythroid cells or induced by erythropoietin has negative and stimulatory roles in normal erythropoiesis and erythroleukemia.

نویسندگان

  • Sarah M Jacobs-Helber
  • Kwan-Ho Roh
  • Daniel Bailey
  • Emmanuel N Dessypris
  • John J Ryan
  • Jingchun Chen
  • Amittha Wickrema
  • Dwayne L Barber
  • Paul Dent
  • Stephen T Sawyer
چکیده

Binding of erythropoietin (EPO) to its receptor (EPOR) on erythroid cells induces the activation of numerous signal transduction pathways, including the mitogen-activated protein kinase Jun-N-terminal kinase (JNK). In an effort to understand the regulation of EPO-induced proliferation and JNK activation, we have examined the role of potential autocrine factors in the proliferation of the murine erythroleukemia cell line HCD57. We report here that treatment of these cells with EPO induced the expression and secretion of tumor necrosis factor alpha (TNF-alpha). EPO-dependent proliferation was reduced by the addition of neutralizing antibodies to TNF-alpha, and exogenously added TNF-alpha induced proliferation of HCD57 cells. EPO also could induce TNF-alpha expression in BAF3 and DA3 myeloid cells ectopically expressing EPOR. Addition of TNF-alpha activated JNK in HCD57 cells, and the activity of JNK was partially inhibited by addition of a TNF-alpha neutralizing antibody. Primary human and murine erythroid progenitors expressed TNF-alpha in either an EPO-dependent or constitutive manner. However, TNF-alpha had an inhibitory effect on both immature primary human and murine cells, suggestive that the proliferative effects of TNF-alpha may be limited to erythroleukemic cells. This study suggests a novel role for autocrine TNF-alpha expression in the proliferation of erythroleukemia cells that is distinct from the effect of TNF-alpha in normal erythropoiesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor necrosis factor (TNF)-alpha directly inhibits human erythropoiesis in vitro: role of p55 and p75 TNF receptors.

Two tumor necrosis factor receptors (TNFRs) with molecular weights of 55 kD (TNFR-p55) and 75 kD (TNFR-p75) have recently been identified and cloned. In previous studies, TNFR-p55 has been shown to exclusively mediate bidirectional effects of TNF-alpha on committed bone marrow granulocyte-macrophage progenitor cells, whereas both TNFR-p55 and TNFR-p75 can mediate inhibition of primitive progeni...

متن کامل

Effect of Tumor Necrosis Factor-Alpha on Erythropoietin- and Erythropoietin Receptor-Induced Erythroid Progenitor Cell Proliferation in β-Thalassemia/Hemoglobin E Patients

OBJECTIVE Thalassemia is one of the genetic diseases that cause anemia and ineffective erythropoiesis. Increased levels of several inflammatory cytokines have been reported in β-thalassemia and might contribute to ineffective erythropoiesis. However, the mechanism by which tumor necrosis factor-alpha (TNF-α) is involved in ineffective erythropoiesis in thalassemic patients remains unclear. The ...

متن کامل

Macrophage control of normal and leukemic erythropoiesis: identification of the macrophage-derived erythroid suppressing activity as interleukin-1 and the mediator of its in vivo action as tumor necrosis factor.

Macrophages have been shown to directly influence the growth and development of mature erythroid progenitors (CFU-E) in normal and erythroleukemic mice. We examined the mechanism by which macrophages mediate their effect on in vivo erythropoiesis. As reported for whole macrophages, serum-free supernatants (SN) from normal resident peritoneal macrophages suppressed in vivo normal and conventiona...

متن کامل

TNF-related apoptosis-inducing ligand (TRAIL) as a negative regulator of normal human erythropoiesis.

The impact of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on normal hematopoietic development was investigated using adult peripheral blood CD34(+) hematopoietic progenitor cells, induced to differentiate along the erythroid, megakaryocytic, granulocytic, and monocytic lineages by the addition of specific cytokine cocktails. TRAIL selectively reduced the number of eryt...

متن کامل

Mechanism of erythropoietin action on the erythroid progenitor cells induced from murine erythroleukemia cells (TSA8).

Erythropoietin is a well-known erythroid differentiation and growth factor, but the mechanism of its action is not well understood. In this work, we have examined its mechanism of action on the erythropoietin-responsive murine erythroleukemia cells (TSA8). TSA8 cells become responsive to erythropoietin after induction with DMSO. Stimulatory effects on erythropoietin response are observed with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 101 2  شماره 

صفحات  -

تاریخ انتشار 2003